İçindekiler

Foto listesi	viii
Şekil listesi	XV
Tablo listesi	xxi

I- GENEL ESASLAR

Bölüm A: Yerküre	1
1. Çekirdek	1
2. Manto	2
3. Litosfer	3
4. Levha Tektoniği	5
5. Levha Tektoniği ve Magmatizma	13
6. Levha içi volkanizma: Sıcak Noktalar	16
Bölüm B: Magmatik kökenli kayalar	17
1. Bileşimleri ve kökenleri	17
2. Tekstür özellikleri	20
2.1. Pegmatitik doku	20
2.2. Faneritik doku	20
2.3. Porfirik doku	21
2.4. Afanitik doku	21
2.5. Camsı doku	22
2.6. Vesiküler doku	22
2.7. Piroklastik doku	23
3. Gaz içeriği, Sıcaklık ve Viskozite	23
4. Magmatik kayaların sınıflaması	24
4.1. Felsik magmatik kayalar	26
4.2. Ortaç magmatik kayalar	27
4.3. Mafik magmatik kayalar	27
4.4. Ultramafik magmatik kayalar	28
Bölüm C: Magmatizma	31
1. İntrüzif magmatizma	32
1.1. Masif Plütonlar	34
1.1.1. Batolit	34
1.1.2. Lakolit	36
1.1.3. Lapolit	36

1.2. Tabüler Plütonizma	37
1.2.1. Dayk	38
1.2.2. Sill	39
1.2.3. Nek	40
2. Extrüzif magmatizma	41
2.1. Volkanizma ürünleri	42
2.1.1. Lav	42
2.1.2. Piroklastik maddeler	44
2.1.3. Gazlar	51
2.2. Volkanik faaliyet tipleri	52
2.2.1. Efüzif püskürmeler	52
2.2.2. Eksplozif püskürmeler	57
2.2.3. Deniz altı püskürmeleri	64
2.2.4. Buzul alttı püskürmeleri	65
2.2.5. Hidrovolkanik püskürmeler	66
2.3. Volkanik strüktürler	68
2.3.1. Volkan konileri	68
2.3.1.1. Lav konileri (Kubbe-Kalkan konileri)	69
2.3.1.2. Kompozit (Stratovolkan) konileri	73
2.3.1.3. Piroklastik koniler	78
2.3.2. Dom yapıları	80
2.3.3. Volkanik örtüler	83
2.3.3.1. Mafik lav örtüleri	83
2.3.3.2. Piroklastik örtüler	100
2.3.3.3. Volkanik tüf örtüleri	106
2.3.3.4. Volkanik breş örtüleri	108
2.3.3.5. Lahar akıntısı örtüleri	110
2.3.4. Volkanik patlama yapıları	112
2.3.4.1. Dietrama	112
2.3.4.2. Maar	113
2.3.4.3. Krater	115
2.3.4.4. Kaldera	116

Bölüm D: Magmatik kayalar üzerinde oluşan	
yüzey şekilleri	
Magmatik kayalarda ayrışma	
1.1. Fiziksel avrısma sürecleri	122
1.2. Kimvasal avrısma sürecleri	126
1.3. Fiziksel ve kimvasal avrısma süreclerinin etkileri	129
1.4. Ayrışma ürünleri	131
2. Volkanoklastik-Sedimanter yapılar	132
2.1. Volkanoklastik-Sedimanter kayalar	132
2.2. Volkanoklastik-Sedimanter istif	133
3. Flüviyo-magmatik jeomorfoloji	134
3.1. Aşınım şekilleri	134
3.1.1. Plütonik yapılarda aşınım şekilleri	135
3.1.2. Volkan konilerinde aşınım şekilleri	141
3.1.3. Bazalt örtülerinde aşınım şekilleri	145
3.1.4. Volkanik breşlerde aşınım şekilleri	149
3.1.5. Volkanik tüflerde aşınım şekilleri	150
3.2. Birikim şekilleri	162
3.2.1. Magmatik kum ve çakıl plajları	162
3.2.2. Piroklastik sedimanter depolar	163
3.2.3. Volkan konisi yamaç depoları	163
3.2.4. Lahar depolari	165
3.3. Terselmiş volkanik rölief	167
Bölüm E: Volkanik Tehlikeler	169
1. Lahar	170
2. Volkanik kül/toz püskürmeleri	176
3. Volkanik gaz yayılımı	181
4. Asit yağmurları	185
5. Volkanik strüktürlerde yamaç problemleri	186
6. Volkanik depremler	191
7. Volkanik faaliyetlerin klimatik etkileri	192
8. Volkanik tsunamiler	194
Faydalanılan Kaynaklar – I	197

II.	ANAHATLARIYLA, TÜRKİYE'NİN MAGMATİK YAPILARI	227
Bö	lüm F: Türkiye'nin plütonik yapılarına ait	
	örnekler	229
1.	Felsik plütonik yapılar	231
	1.1.Kuzey Marmara plütonik yapıları	231
	1.2.Güney Marmara plütonik morfolojisi	234
	1.3.Kuzey Ege plütonik yapıları	236
	1.4.Orta Anadolu plütonik yapıları	240
	1.5.Batı Karadeniz plütonik yapıları	242
	1.6.Doğu Karadeniz plütonik yapıları	243
	1.7.Anadolu'daki diğer plütonik yapılar	245
2.	Mafik ve Ultramafik plütonik yapılar	247
Bö	lüm G: Türkive'nin volkanik vapılarına ait	
	örnekler	250
1.	Senozoik volkanizması	252
2.	Volkan konileri	253
	1.1.Lav konileri	253
	1.2.Stratovolkan konileri	257
	1.3.Piroklastik koniler	263
3.	Volkanik örtüler	267
	2.1. lav örtüleri	267
	2.1. Piroklastik örtüler	270
4.	Volkanik patlama yapıları	272
	3.1. Diatrema	272
	3.2. Maar	273
	3.3. Krater	275
	3.4. Kaldera	277
5.	Volkanik dom yapıları	279
6.	Denizaltı volkanizması, Ofiyolitler	280
Fag	ydalanılan Kaynaklar – II	284
İndeks		293

Foto Listesi

Foto A.1: 17 Ağustos 1999 Kocaeli depreminde, İzmit-	
Adapazarı arası demiryolunda, Tepetarla	
istasyonu yakınlarındaki ötelenme	11
Foto B.1: Pegmatitik doku (Pegmatit)	20
Foto B.2: Faneritik doku. (Granit)	20
Foto B.3: Porfirik doku. Her tür magmatik kayanın porfiri	
olabilir	21
Foto B.4: Afanitik doku (Riyolit)	21
Foto B.5: Camsı doku (Obsidiyen)	22
Foto B.6: Vesiküler doku (S: Skorya, P: Pomza)	22
Foto B.7: Piroklastik doku (Volkanik tüf)	23
Foto B.8: GB Anadolu, Kemer-Köyceğiz bölümünde; Peridotit,	
Piroksenit, Hornblendit, Harzburjit örneklerinden	
oluşan ultrabazik kayalar (yani yeşil kayalar) ve	
hidratasyonla oluşan serpantinler geniş alanlar	
kaplar	30
Foto B.9: 1600m rakımlı Çaykavak Geçidi (Niğde-Ulukışla yolu))
mafik nitelikteki su altı volkanizmasına bağlı olarak,	
hidrostatik basınç etkisiyle şekillenerek katılaşan	
"Yastık lav (Pillow lav)" yapısı	30
Foto C.1: Üzerindeki örtü tabakalarının jeolojik mazi icinde	
aşınıp taşınması sonucunda karmaşık şekil	
özellikleriyle ortaya çıkarlar	35
Foto C.2: Erozyon sonucu topografyada yüzeylenen Dayk ve	
Nek. San Juan County, New Mexico	38
Foto C.3: Bu fotoğrafta, ilksel konumları tektonik deformasyon	
ile bozulan piroklastik, volkanoklastik istiften oluşan	
depo, daha genç mafik karakterli bir dayk ile	
kesilmiştir	38
Foto C.4: Felsik piroklastikler içine enjekte olan "Sill" ve onu	
dikine kesen "Dayk" görülmektedir	39
Foto C.5: Volkanik nek; Devils Tower (Wyoming, ABD)	40
Foto C.6: Navajo volkanik sahası (New Meksika, USA)	40
Foto C.7: Farklı boyut ve şekillerdeki volkan bombası örnekleri	46
Foto C.8: Siyah, kırmızı-kahverengi tonları ile mafik skorya	
taneleri	47
Foto C.9: Kula yöresindeki matik tetra (skorya) örnekleri ve	4.0
tetra konisi yamaci	48

Foto C.10:	Pomza; beyaz, gri, bej ve farklı tonlarındaki felsik	
	bileşimli veziküler camsı volkanik bir üründür	48
Foto C.11:	Volkanik kül; volkanik bir patlama sırasında	
	püskürtülen 2 mm den küçük kaya, mineral ve	
	cam parçacıklarının bir karışımıdır	49
Foto C.12:	St. Helens Dağı'nın patlama sütunu (18 Mayıs 1980)	50
Foto C.13:	Laki püskürümü (Izlanda tipi volkanik faaliyet)	53
Foto C.14:	Yarık (Fissür baca) boyunca yüzeye cıkarak cevreye	
	yayılan mafik lav akıntıları	53
Foto C.15:	Laki çizgisel püskürümü	55
Foto C.16:	08 Mayıs 1902 tarihinde gerçekleşen Pele	
	volkanizması ve "Pele kulesi" olarak	
	isimlendirilen sonrasında oluşan baca tıkacı	61
Foto C.17:	(a) Hidrotermal püskürmeler, (b) Featik püskürmeler,	
	(c) Featomagmatik püskürümler	67
Foto C.18:	İzlanda'daki fissür volkanizması ve diverjansa bağlı	
	açılma. Thingvellir Ulusal Parkı (İzlanda)	70
Foto C.19:	Erciyes Stratovolkan konisi ve çevresindeki parazit	
	koniler ve dom yapıları	77
Foto C.20:	Kula çevresindeki yöresel adı "Divlit" olan mafik	
	bileşimli piroklastik (skorya) volkan konilerinden biri	79
Foto C.21:	Kula çevresindeki genç bazalt akıntıları ve mafik	
	bileşimli piroklastik (skorya) volkan konileri	79
Foto C.22:	Piroklastik koniler, patlamalar sırasında koni	
	duvarının deforme olmasıyla klasik koni şekillerini	
	kaybedebilirler	79
Foto C.23:	Erciyes stratovolkan kopleksi içindeki Karagüllü	
	Tepe volkanik domu	80
Foto C.24:	Bir baca aracılığı ile volkan krateri ya da kalderası	
	içinde yüzeylenen ve felsik bileşimdeki yüksek	
	viskoziteli lavlar, akarak patlama çukurunun dışına	
	çıkıp, etrafa yayılma fırsatı bulamadan, hızlı bir	
	şekilde katılaşarak baca tıkacı oluşturacak şekilde	
	kubbe yapısı oluştururlar	82
Foto C.25:	Baca tıkacı lav domları; çok hızlı katılaşan, kıvamlı ve	e
	yapışkan lavların kaldera ya da krater içindeki kubbe	
	yapılarıdır	82
Foto C.26:	Sıcak, bazaltik pahoehoe tipi yüzeyli lav	84
Foto C.27:	Sıcak bazaltik Aa tipi lavı	85
Foto C.28:	Bloklu lavlardan oluşan mafik örtü	86
Foto C.29:	Hassa (Hatay) leçesi leçe yapısı	87
Foto C.30:	Basınç sırtları	88

Foto C.31	: Hornitoslar; mafik lav akma ve örtülerinin	
	yüzeylerinde oluşan mikro relief şekillerinden biridir	89
Foto C.32	Sıçrama konileri; bir bacadan çıkan lav parçalarının	
	baca çevresine sıçraması ile oluşur	90
Foto C.33	: Lav kanalları	91
Foto C.34	: Lav tünelleri	93
Foto C.35	: Lav mağaraları	94
Foto C.36	: Mafik lav örtülerindeki çökme yapıları	95
Foto C.37	: Effüzif lav gazı bacaları	96
Foto C.38	: Yastık lavlar (Pillow Lava)	97
Foto C.39	: Bartın Güzelcehisar Bazalt sütunları	99
Foto C.40	: Boyabat Kurusaray Köyü Bazalt sütunları	99
Foto C.41	: 2011 Shinmoedake (Japonya) püskürmesi	100
Foto C.42	: Farklı tane boyutundaki, felsik piroklastik ürün	
	konkordant tabakalı, pekişmemiş (unkonsolide)	
	örtü depo	101
Foto C.43	: Mafik unkonsolide piroklastiklerden (skorya) oluşan	
	tefra deposu	101
Foto C.44	: Farklı püskürümlere ait felsik ve mafik unkonsolide	
	iri taneli piroklastik katmanlarının ardalanmalarından	
	olușan tefra deposu	103
Foto C.45	: Piroklastik akma bulutu	104
Foto C.46	: Piroklastik dalga depolarının stratigrafik özellikleri	105
Foto C.47	: Volkanik tüf tekstür ve Kapadokya'daki volkanik	
	tüfleri (İgnibritler) üzerinde gelişen aşınım şekiller	106
Foto C.48	: Kapadokya yöresindeki farklı ignimbrit tabakalanma	
	yapıları	107
Foto C.49	: Otoklastik volkanik breş sahası	109
Foto C.50	: Piroklastik volkanik breş	109
Foto C.51	: Kolombiya'daki Nevado del Ruiz Dağı volkanizması	
	(13 Kasım 1985) ile oluşan lahar akışı Chinchina	
	köyünü volkan çamuru gölüne çevirmişti	110
Foto C.52	: 19 Mart 1982 tarihinde St. Helens Dağındaki volkanil	ĸ
	faaliyet ile püskürtülen sıcak piroklastik malzemeler v	ve ve
	pomza kırıntıları, kar erimelerine neden olarak, lahar	
	oluşturmuştur	111
Foto C.53	: Endonezya'daki Galunggung volkanı 1982 püskürüm	ü ile
	oluşan lahar akıntısı evlere ve ekili alanlara büyük zan	rar
	verdi	111
Foto C.54	: Yılanlı Diatreması	113
Foto C.55	: Meke Gölü (Tuzlagöl) maarı ve piroklastik konisi	114
Foto C.56	: Acıgöl maarı, (Karapınar)	114

Foto C.57: Üstte Süphan Dağı krateri, Alttaki foto Kula volkanik sahasındaki piroklastik koni olan Sandal Divliti ve	
krateri	115
Foto C 58: Nemrut Kalderası konik sekilli olun tahan alanı	115
+36 km ² kadarken üst alanı +48 km ² civarındadır	116
Foto C 59: Mount Mazama Krater gölü kalderası (Oregon ABD)	118
Foto C.60: Kīlauea, Hawaii Adaları'nda şu anda aktif olan bir	110
volkan olup, Hawaii adasını oluşturan beş kalkan	
volkanın en aktifidir	120
Foto C.61: Havaii tipi kaldera; devam eden dönemsel aktivitenin	
çökme deformasyonu nedeni ile kaldera morfolojisi	
değişimi güncelliğini korur	120
Foto D.1: Kaya yüzeylerinde çatlamalara neden olan ıslanma-	
kuruma ayrışma süreci "Termal Stres" olarak da	
tanımlanır	124
Foto D.2: Granitin hidroliz ile ayrışması sonucu kuvars,	
feldspat ve mika ayrışarak dağılır	126
Foto D.3: dış yüzeyinden başlayarak oksidasyon ile altere	
olarak (kimyasal bozulma) limonite dönüşen, biyotit	
ve amfibol içeren granitik bir kaya	127
Foto D.4: Plütonik kayalarda yüzey altında ayrışma süreçleri	
özellikle toprak neminin kimyasal süreçleri	
tetiklemesi ile güçlü şekilde devam eder	128
Foto D.5: Granit'te eksfoliasyon şeklindeki ayrışma	129
Foto D.6: Mafik volkanik kayada gelişen sferoidal ayrışma	130
Foto D.7: Epiklastik volkanik sedimanter kayalardan oluşan	
istif	133
Foto D.8: Fiziksel zayıflık zonlarını takip ederek plütonik	
kayaların iç kesimlerine giren su; temas ettiği kaya	
yüzeyinden başlayarak hidroliz ile kayayı	
ayrıştırmaya başlar	135
Foto D.9: Felsik plütonik yapıların yüzeylendiği, örtüden	
yoksun magmatik kayalar üzerinde gelişen tor	
süreci; üst üste dizilmiş muntazam blokları oluşturur	136
Foto D.10: Yüzevi deforme olmus granit, diorit, dasit, dolerit,	
vb. magmatik kayaların yuvarlak blokları olabilir	138
Foto D.11: Avşa Adası granitleri üzerinde gelişen ayrışma,	
yarıntı erozyonu ve yamaç işlenmesi	139
Foto D.12: Şekil özellikleri itibarıyla farklı tip inselberg	
örnekleri	140

Foto D.13: Kula'daki piroklastik tefra konileri (Divlit)	
yamaçlarında ışınsal drenajın rill erozyonu	
yaygındır	144
Foto D.14: Lapili konilerinin etek seviyelerinden malzeme	
alındığında gevşek mafik klastikler gravitasyona	
bağlı olarak, kayarak yer değistirirler	144
Foto D.15: Ardısıklı bazalt akıntılarından olusan kalın mafik	
istif ve derin Palouse Nehri vadisi, Washington	145
Foto D.16: Bazalt platosu, Büt ve Mesa yapıları	146
Foto D.17: Volkanik tüflerdeki ana asınım sekilleri	150
Foto D. 18: İgnimbirit plato yüzeyi ve yamaçlarda gelişen	
varıntılara ait oluk erozyonu	151
Foto D. 19: Asınıma karsı farklı direncteki ignibiritler üzerinde	
gelişen oluk erozyonu	151
Foto D.20: Kapadokya yöresindeki ignibiritler üzerinde gelişen	
peribacasi asınım sekilleri	152
Foto D.21: Kapadokya yöresindeki volkanik tüfler üzerinde	
peribacalarının gelişim evreleri	152
Foto D.22: Geri planda henüz yarılmamış, farklı dirençteki	
ignimbrit ardalanması (A). Onun önündeki belirgin	
peribacası aşınım şekli (B). Ve ön planda şapkası	
düşmüş ve hızlı erozyon safhasındaki peribacası	
kalıntısı (C)	153
Foto D.23: Kapadokya yöresinde, peribacalarının yamaç	
üzerindeki lokasyonları	154
Foto D.24: İgnimbirit yamaçlarında, su erozyonu ile gelişen	
peribacası mantarkaya ve oyuklar	155
Foto D.25: İgnimbiritler üzerinde gelişen su ve rüzgâr erozyonu	
oyuntu aşınım şekilleri	155
Foto D.26: Kula volkanik sahasındaki gaz kaçma yapıları	156
Foto D.27: İgnimbiritlerden oluşan volkanik tüflerdeki erozyonal	
kubbe yapıları	157
Foto D.28: Kapadokya ignimbrit platosu	158
Foto D.29: İgnimbritlerden oluşan volkanik tüf platosu ve aşınım	
şekillerinin geliştiği yamaçlar	159
Foto D.30: Volkanik örtülerdeki mesa ve korniş yapıları, yamaç	
profilindeki aşınım düzensizlikleri	159
Foto D.31:İgnimbirit içinde açılmış olan Ihlara Kanyonu	
(Aksaray) ve paralel yamaç gerilemesi	161
Foto D32: siyah plaj kumlarının yakın çekim görüntüsü	162
Foto D.33: Siyah renkli bazalt kumlarından oluşan Sinop	
Karakum Plaji	162

Foto D.34: Volkanik enkaz çığı birikimi tümsekleri	
(hummocks)	164
Foto E.1: Süper Tayfun Goni (Rolly) (1 Kasım 2020) tetiklemesi Mayon volkanının (Filipinler) yamaçlarından gelen yoğun lahar akışı afet boyutunda sonuçlara neden	yle,
olmuştu Foto E.2: Armero trajedisi, 13 Kasım 1985'te Kolombiya, Tolima'daki Nevado del Ruiz stratovolkanının patlamasının ardından lahar akıntısıyla meydana	171
geldi	172
Foto E.3: Merapi lahar akıntısı 28 Mart 2011 Foto E.4: 05 Nisan 1815 Tambora volkanı püskürmesi ile atmosfere salınan kül, toz, vb. volkanik aerosoller	173
Foto E.5: Çapı 2-4 mm'den az olan volkanik kül örttüğü her	1//
şeyi yüksek sıcaklığı ile zarar verir Foto E.6: Vezüv volkanının MS 79 yılındaki püskürümü ile saçılan sıcak piroklastik yağışın altında kalıp, gömülerek yaşamlarını yitiren Pompeii şehrinin insanları halen antik kent içindeki müzede	179
sergilenmektedir Foto E.7: Halema'uma'u kraterindeki gaz çıkışı, Kilauea, Hawaii	180 181
Foto E.8: Ihlara kanyonundaki Kızılkaya ignimbiriti çatlaklı yapısı ve blok düşmeleri	189
Foto E.9: Ignimbirit yıkılmaları kalın ignimbirit örtülerinde ait dikliklerin alınlarında gelişen kuruma, gravitasyona bağlı çatlak ve yarıklar ile oluşan	100
Kopmalardir	190
Foto G.1: Agri Dagi Stratovolkan Konisi, 513/m zirve yükseltisiyle Türkiye'nin en yüksek dağıdır Foto G.2: Haşandağ ve Melendiz volkanik kütleşi ve ön planda	257
genç volkanik örtünün yarılmasıyla oluşan alçak plato yüzeyi	261
Foto G.3: Kula volkanik yöresi Sandal Piroklastik konisi (Sandal divliti)	263
Foto G.4: Diyarbakır volkanik yöresi mafik bileşimli piroklastik (skorya) volkan konsi	263
Foto G.5: Kula genç volkanik yöresindeki piroklastik volkan konileri	266

Foto G.6: Hassa bazalt örtüsü; bazalt örtüsü zengin bazik lav	
akıntısı yüzey türleri ve zengin yüzey şekillerine	
sahip bir volkanik yöredir	269
Foto G.7: Karacadağ (Diyarbakır) volkanizması bazalt örtüsü;	
bazik lav akıntısı yüzey türleri ve zengin yüzey	
sekli cesitliliğine sahip bir volkanik vöredir	269
Foto G.8: Kapadokva vöresindeki piroklastik örtü; parklı	
püşkürümlere ait cok dönemli ignimbirit volkanik	
örtüsüdür	270
Foto G.9: Niğde merkez ile Ciftlik belediyesi arasında bulunan	
1620m rakımlı Sekkin Gecidi ignibirit örtüsü icindeki	
vol varması	270
Foto G.10: Karaman volkanik vöresi: cok savıda volkanik	
patlama vapılarının bir arada bulunduğu bir sahadır	272
Foto G 11: Yılanlı Diatreması Bazı yayınlarda maar olarak da	
ifade edilmis olmasına karsın morfolojik özellikleri	
nedeni ile diatrema türünde bir patlama sekli olarak	
tanımlanmıştır	273
Foto G 12. Meke Gölü maarı ve piroklastik konisi	273
Foto G 13: Actoril Maari	273
Foto G 14: Nar Gölü maarı	274
Foto G 15: Ercives volkan kopleksi icindeki monojenik patlama	271
vanısı olan Cora Maarı	274
Foto G 16: Avgır Gölü Maarı: Sünhan Dağı stratovolkan konisi	_,.
günev etek düzlüğünde niroklastik halkası ile ver alır	274
Foto G 17. Hasandağ stratovolkan konisi Büvük Hasandağ ve	271
Küçük Hasandağ kraterleri	275
Foto G 18. Sünhan krateri ve krater gölü koni etek düzlüğünde	215
ise Avgir maari ve Van Gölü	276
Foto G 19: Gölcük Kalderaşı içindeki maar ve dom vanıları	278
Foto G 20: Ercives Dağı ve dom vanıları	279
Foto G 21: Ercives volkan konleksi icindeki monoienik	217
nüskürüme ait olan Dikartın Dağı dom yanısı	279
Foto G 22. Nižde-Ulukisla karavolu üzerinde, vol varması	217
nillow lav (Vastik lav) vanisi kesiti	280
Foto G 23: Denizalti volkanizmasi ve vastik lav vanilarinin tinik	200
örneklerinden hiri de Karnaz Balalan kövü (KKTC)	
cevresindekilerdir	281
Foto G 24: Peridotit ağırlıklı ultrabazik kavalardan oluşan veşil	201
kavalar varması (GR Anadolu)	282
Kayalar yarmasi (OD Anadolu)	202

Şekiller Listesi

Sekil A 1. Yerkürenin iç katmanları	1
Sekil A 2: Manto ve litosfere ait kesit özellikler	2
Sekil A 3: Litosferin kesit özellikleri	3
Sekil A 4. Tektonik levhalar ve sınır özellikleri	6
Sekil A 5: Manto icindeki konveksiyon akıntıları ve tektonik	Ŭ
levha sınırları ile ilişkişi	7
Sekil A 6: Konverians levha sınırları	8
Sekil A 7: Diverians levha sınırı gelişim aşamaları	9
Sekil A 8. İzlanda karaşı üzerinden gecen Avraşva ve Kuzev	/
Amerika tektonik levhaları arasındaki sınır adayı	
vavas vavas hölerek parcaları bir birinden avırırken	
avnı zamanda veni kabuk olusumu ile adanın alanşal	
olarak büyümesinde ve sekilsel değisimine neden	
olmaktadır	10
Sekil A 9. Avrasva Afrika ve Aran Levhaları arasındaki	10
Anadolu levhasının batıya hareketine müşaade	
eden "Transform levha sınırları"	10
Sekil A 10: Karalar üzerindeki transform levha sınırı, yatay ye	10
ters vöndeki ver değistirmeler	11
Sekil A 11. Okvanus tabanı transform favlı "Sırt-Sırt"	11
levha sınırı	11
Sekil A 12: Orta Atlantik Sırtı: yeni kabuk oluşumları ile	11
sekillenen ve transform favlar ile kesilen, okvanus	
tabanı bir diverians levha sınırıdır	12
Sekil A 13: Dünyanın tektonik aktivite haritası. Son bir milyon	
vılın tektonik ve volkanik faaliyetleri esas alınmıştır	14
Sekil A.14: Pasifik Okvanusu'nun kenarındaki deprem ve	
volkanik aktivite zinciri	15
Sekil A.15: Pasifik Leyhası ortasında yer alan Hawaii Adaları	10
ve deniz tabanı vükseltileri	16
Sekil A.16: Hawaii adaları ve volkanik deniz tabanı	10
vijkseltilerinin sematik kesiti	16
y ansoronon min şonnasın nosita	10
Sekil B.1: Kava türü ve kava bilesimi arasındaki iliski	19
Sekil B.2: Yerkürenin litosferindeki magmatik kavaların cins	-
ve kökenleri	19
Şekil C.1: Plütonizma, oluşan plütonik yapılar ve tektonik	
yükselmeye bağlı olarak gerçekleşen erozyon	
sonucu plütonik yapıların yüzeylenmesi	33

Şekil C.2: Konverjans levha sınırındaki tektonik gelişmeler,	
batolit oluşumu ve aşınım sonucu yüzeylenmesi	35
Şekil C.3: Üstte tipik lakolit ve lapolit kesiti, altta ise üzerindeki	
örtüsü sıyrılmış ve aşınıma karşı gösterdiği direnç	
farkından dolayı yüzeylenerek, belirginleşen lakolit	
domu	37
Şekil C.4: Volkan bacası içinde kalıp, katılaşan baca tıkacı,	
kendinden daha az dirençli olan koni malzemelerinin	
aşınması sonrasında değişik çap ve seviyedeki münfer	rit
sivri yükseltilere (Nek) dönüşürler	40
Şekil C.5: Bir volkan konisine ait magmatizma unsurları	41
Şekil C.6: Lav türleri, özellikleri ve oluşan magmatik kayalar	42
Şekil C.7: Patlamalı volkanizma ve ürünleri	45
Şekil C.8: Çizgisel püskürme (Fissür baca Volkanizması) ve	
oluşum şekli	53
Şekil C.9: Efüsiv püskürmelerden biri olan İzlanda tipi çizgisel	
(fissür baca) Volkanizması	54
Şekil C.10: Efüziv Hawaii adalar zinciri fissür volkanizmasının	
kökeni	55
Şekil C.11: Hawaii tipi püskürümün çizgisel adalar zinciri	56
Şekil C.12: Adalar ve okyanus tabanındaki yayılış alanları	56
Şekil C.13: Bir bacaya bağlı merkezi püskürme ile oluşan volkan	l
konisi ve volkanik unsurları	57
Şekil C.14: Patlamalı püskürme türleri	58
Şekil C.15: Stromboli ve Vulkano; İtalya'nın Sicilya açıklarındal	si
Aeolian takımadaları olarak bilinen 7 volkanik adadar	1
iki tanesidir	59
Şekil C.16: Şiddetli patlamalar, püskürme bulutu, kül ve asit	
yağmurları, saniyede yüzlerce metre hızla koni	
yamacından aşağı istikamette yayılıp akan kızgın	
piroklastikler, viskoz lav akışı Vulkano tipi	
püskürmelerin öne çıkan özellikleridir	60
Şekil C.17: 08 Mayıs 1902 tarihinde gerçekleşen Pele	
volkanizması sırasındaki dinamik blast etkisi	
(patlama basınç dalgası) ve sıcak kül bulutu	
dalgalanmasının ortalama yönüne ait simülasyon	
Haritası	62
Şekil C.18: Plinian tipi püskürme ve oluşan gaz, kül bulutunun	
yükselmesi	63
Şekil C.19: Okyanus tabanında meydana gelen tipik bir denizaltı	
volkanizmasının şematik gösterimi	64

Şekil	C.20: Buzul altı patlamaların genel modeli ve ilişkili	
,	volkanik fasiyes dağılımı	65
Şekil	C.21: Eylül 2014 te gerçekleşen Ontake hidrovolkanik	
,	püskürümünün şematik kesiti	67
Şekil	C.22: Farklı volkan konilerinin karakteristik özellikleri	69
Şekil	C.23: İzlanda tipi volkanizma ve onun nedeni olan	
,	İzlanda'dan geçen diverjans sınırı	70
Şekil	C.24: Hawaii tipi kalkan şekilli lav konisi	71
Şekil	C.25: Kalkan şekilli tipik bir Hawaii volkanının şematik	
	enine kesiti	72
Şekil	C.26: Hawaii adasındaki kalkan şekilli Kilauea volkanı	72
Şekil	C.27: Tipik bir stratovolkan konisi kesit özellikleri	73
Şekil	C.28: Ağrı Dağı Sayısal Yükselti Modeli (DEM) ve	
	KD-GB profili	74
Şekil	C.29: Ağrı Dağı stratovolkan konisi; eğim(derece) ve	
	drenaj özellikleri	75
Şekil	C.30: Ağrı Dağı Stratovolkanı ve Ağrı Dağını ve yakın	
	çevresini oluşturan magmatikler	76
Şekil	C.31: Bacasından dallanan parazit konilerin olduğu bir	
	polijenik volkan konisinin kesit özellikleri	77
Şekil	C.32: Farklı tip Lav Domları	81
Şekil	C.33: Viskozitesi yüksek felsik lavlar patlama bacası	
	etrafındaki piroklastik birikim içinde hızla katılaşarak	
	baca tıkacı bir dom oluşturabilir	82
Şekil	C.34: Etna'nın Eylül 2004 püskürümünde, gerçekleşen	
	bazaltik lav kanallarının morfolojisi	92
Şekil	C.35: Bazaltlarda gelişen sütunlu eklemler (Bazalt	
	sütunlar) oluşumu	98
Şekil	C.36: Farklı yollarla gerçekleşen piroklastik depo	
	oluşumlarına ait tekstür ve strüktür özellikleri	102
Şekil	C.37: Piroklastik akma ve dalga bulutları yer çekimi	
	güdümlü 30-100 km/saat hızla hareket eden, 200-800	C°
	arasında değişken yüksek sıcaklıklardaki kül, pomza	
	blokları ve gaz karışımı bulutlardır	104
Şekil	C.38: Dietrama ve kimberlit baca şematik enine kesiti	112
Şekil	C.39: Monojenik volkan olan Maar patlama yapısı şematik	
	enkesiti	114
Şekil	C.41: Kalderalar; büyük boyutlardaki volkanik çökme	
~ • • •	yapılarıdır	117
Şekil	C.42: Yellowstone (Resurgent) tipi kaldera oluşumu	119

Şekil D.1: Donma-Çözülme süreci ile magmatik kayalar	
fiziksel olarak bloklara ayrılarak parçalanırlar	123
Şekil D.2: Basınçtan kurtulma ayrışma süreci plütonik magmatik	
kayalarda en sık karşılaşılan fiziksel ayrışma şeklidir	125
Şekil D.3: Magmatik kayaların yüzey altındaki ayrışma gelişimi;	
fiziksel ve kimyasal süreçlerin birlikte çalışmasıyla	
gerçekleşir	130
Şekil D.4: Granitin şiddetli ayrışması ve oluşan regolitin	
süpürülmesi ile açığa çıkan yuvarlak blok oluşumu	
evreleri	137
Şekil D.5: Ağrı Dağı polijenetik jeomorfolojisi. Kuaterner	
volkanizması ürünleri	142
Şekil D.6: Erciyes Dağı stratovolkan konisi (üstte) ve üzerinde	
gelişen buzul jeomorfolojisi	143
Şekil D.7: Bazalt platosu ve akarsu aşındırması ile gelişen masa	
ve büt oluşumu	147
Şekil D.8: Bazalt, göl-akarsu, piroklastik ardalanmalı istifte	1.40
yamaç gerilemesi	148
Şekil D.9: Lahar hareketi ve etki alanı şekilsel özellikleri	166
Şekil D.10: Lahar akıntılarına ait birikintilerin yatak içinde,	1.00
yatay ve duşeydeki dağılışı	100
Şekil D.11: Terseimiş volkanik rolletin gelişim aşamaları	108
Sekil E.1: Volkanizma kökenli tehlikeler	169
Şekil E.2: St. Helen volkanı, piroklastik ve lahar alanları	174
Şekil E.3: Lahar tehlike riskini azaltmak için temel stratejilerin	
şematik gösterimi	175
Şekil E.4: Eyjafjallajökull volkanının 16 Nisan 2010 tarihli	
püskürüm fotosu ve volkanik kül bulutunun SEVIRI	
(Spinning Enhanced Visible and Infrared Imager)	
verisine göre 3 farklı zaman aralığındaki mekânsal	
dağılışı	178
Şekil E.5: Nyos Gölü volkanik CO2 gazı püskürümü	182
Şekil E.6: Volkanik gazların iklim üzerindeki soğutucu etkisi	183
Şekil E.7: Magmanın litosfer içine enjekte olarak bir hazne	
oluşturmasının yarattığı stres; yerkabuğunda çatlama,	
kırılma deformasyonu için tetikleyici olur ve her kırık	
küçük bir deprem ile yeryüzünde hissedilir	191
Şekil E.8: Plinian püskürümü ile atmosfere salınan volkanik	102
ürünler ve solar radyasyon etkileşimi	193
Şekil E.9: Kiyi ve yakınlarında meydana gelen bir volkanizma	
sırasında denize ulaşarak deniz tabanına yayılan	

büyük hacimlerdeki lav ya da piroklastik malzemeler deniz tabanında önemli batimetrik değişikliklere neden olur Şekil E.10: Hunga-Tonga-Hunga-Ha'apai deniz altı volkanizmasının neden olduğu tsunami dalgaları,	r 195
kıtaların Pasıfık Okyanusu kıyılarına saatler içinde ulaşarak hasarlara neden olmuştur	196
Şekil F.1: Türkiye'nin magmatik kökenli kayalarının dağılışı	228
Şekil F.2: Türkiye'nin plütonik kayalarının dağılışı	230
Şekil F.3: Yıldız Dağları (Istrancalar) metamorfik kütlesi içinde	ki
Demirköy granit batoliti	231
Şekil F.4: Türkiye'nin batı bölümündeki plütonik kayalar	232
Şekil F.5: Gebze(4) ve Çavuşbaşı(5) felsik plütonları Istanbul'u	n
plütonik yapılarını oluşturur	233
Şekil F.6: Elmadağ (İstanbul) çevresinin jeoloji haritası	234
Şekil F.7: Güney Marmara plütonik yapıları	235
Şekil F.8: Uludağ granit batoliti	235
Şekil F.9: Uludağ plütonu blokdiyagramı	235
Şekil F.10: Madra Dağı, Kozak plütonu	237
Şekil F.11: Madra Dağı ve Kozak felsik batolit plütonu	
jeolojik kesiti	237
Şekil F.12: Kuzey Ege plütonik yapıları	238
Şekil F.13: Orhaneli Plütonu ve çevresinin sayısal yükselti	
modeli	238
Şekil F.14: Eğrigöz, Koyunoba ve Alaçam Oligosen granitoid	
Plütonları	239
Şekil F.15: Anadolu'nun orta bölümündeki plütonik yapıların	
dağılışı	240
Sekil F.16: Üst Kretase-Paleosen Granitoyid (desensiz), Granit,	
Granodiyorit (+), Siyenit (x.x), Monzonit (#), Gabro	(x)
sokulumlarına ait Orta Anadolu plütonik yapıları	241
Sekil F.17: Batı Karadeniz felsik plütonları	242
Sekil F.18: Bolu Dağları metagranit plütonu	242
Sekil F.19: Mesozoik birimler içindeki Dogger (Orta Jura)	
granitoid sokulumlarına ait (g4 numaralı plütonlar)	
Batı Karadeniz Plütonları	243
Sekil F.20: Doğu Karadeniz felsik plütonları	244
Sekil F.21: Doğu Karadeniz Dağları Mesozoik birimleri icine er	ijekte
olan Paleosen-Eosen felsik plütonik vapılar	244
Sekil F.22: Giresun Dağları Mesozoik birimleri icine enjekte	- • •
olan felsik plütonik vapılar	245
Julian Landary California	

Şekil F.23: Bilecik-Beypazarı ve civarındaki felsik Plütonlar	246
Şekil F.24: Malatya, Bingöl, Van bölgesi felsik Plütonları	246
Şekil F.25: Aydın, Çine felsik plütonik kayalar	246
Şekil F.26: Türkiye'deki bazik ve Ultrabazik Plütonlar	247
Sekil F.27: Bursa-Akhisar-Uşak bölgesi bazik-ultrabazik	
Plütonları	248
Şekil F.28: Muğla, Burdur, Fethiye bölgesi bazik-utrabazik	
Plütonları	248
Şekil F.29: Aksaray, Divriği, plütonları	249
Şekil F.30: Malatya, Bingöl, Van bölgesi felsik plütonları	249
Şekil G.1: Türkiye'deki volkanik kayaların dağılışı	251
Şekil G.2: Türkiye'deki volkan konileri ve aktif faylar	254
Şekil G.3: Karacadağ (Diyarbakır) lav konisi	255
Şekil G 4: Karacadağ Bazalt sahası	255
Şekil G.5: Tendürek Dağı, Ağrı Dağı volkanik bölgesi	256
Şekil G.6: Doğu Anadolu'daki stratovolkan konileri	258
Şekil G.7: Ağrı Dağı ve çevresi volkanik bölgesi	259
Şekil G.8: Süphan ve Tendürek Dağları volkanik bölgesi	260
Şekil G.9: Hasandağı ve Melendiz Volkanı	261
Şekil G.10: Orta Anadolu'daki GB dan itibaren; Karadağ,	
Karacadağ, Hasandağ, Melendiz ve Erciyes Dağı	
stratovolkan ve piroklastik konileri	262
Şekil G.11: Erciyes Dağı stratovolkan konisi; Orta Miyosen'den	
günümüze, çok dönemli püskürmelerle gerçekleşen k	coni
morfolojisi, çok sayıdaki parazit koni, lav akışları, la	V
domları ve piroklastik yığışmalarla şekillenmiştir	262
Şekil G.12: Kula volkanik yöresindeki piroklastik koniler	264
Şekil G.13: Kula-Adala arası genç volkan reliyefi	265
Şekil G.14: Türkiye'deki lav örtülerinin dağılışı	268
Şekil G.15: Türkiye'deki piroklastik örtülerinin dağılışı	271
Şekil G.16: Karadağ volkan konisi (Karaman) ve parazit koni	
ve dom yapıları	276
Şekil G.17: Erciyes Dağının buzullar tarafından aşındırılarak	
deforme edilmiş zirve bölgesi	276
Şekil G.18: Nemrut kalderası	277
Şekil G.19: Gölcük Kalderası	278
Şekil G.20: Molla Tepe Domu	280
Şekil G.21: Türkiye'deki denizaltı volkanizmasına ait kayaların	
dağılışı	283

Tablo Listesi

Tablo A.1: Boyutlarına göre büyük ve küçük tektonik	
levhalardan bazıları	5
Tablo B.1: Bileşimlerine göre magma türleri ve magmatik	
kayalar	18
Tablo B.2: Tipik felsik, ortaç, mafik ve ultramafik kayaların	
yaygın mineralleri	24
Tablo B.3: Magmatik kayaların özellikleri ve sınıflaması	25
Tablo B.4: Yaygın magmatik kaya örnekleri	29
Tablo C.1: Magmatizma ve kapsamı	31
Tablo C.2: Piroklastikler ve piroklastik depoların tane	
boyutlarına göre yapılan sınıflaması	45
Tablo C.3: Bazı volkanik püşkürmelere ait gaz salınımlarının	
karşılaştırmalı yüzdeleri	51
Tablo D.1: Magmatik kayalardaki ayrışma ürünleri	131
Tablo D.2: Volkano-Sedimanter kayaların sınıflaması	132
Tablo E.1: Yıllık antropojenik – volkanik CO ₂ emisyon miktarı	
karşılaştırması	194